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Motivation and Methodology
ÅDataset: Historical data collected at Germany’s first off-shore 

wind farm, Alpha Ventus*.

ÅReal datasets are characterised by uncertainty. 
We propose three models for predicting power probability 

distributions, which should be more informative than point estimators. 

Inputs to the models are the wind speed, turbine type and location 
of upstream neighbours. 

Figure 3: Alpha Ventus
Figure 2: Illustration showing a turbine, Ὥ, 
being downstream of two turbines Ὦand Ὧ.

Figure 1: Exampleshowing some of
the uncertaintiesassociatedwith wind
powerprediction.
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* The dataset was made availableby the RAVEinitiative,
which was funded by the German FederalMinistry of
EconomicAffairsandEnergy(see: www.rave-offshore.de).



Bayesian Models
ÅFlipout (Wen et al.) was employed for Bayesian VariationalInference.

ÅBMLP–A multilayer perceptron formed by stacked DenseFlipoutLayers.

Åὴ ὪύίȟὰȟὨ ȟÓÉÎ‌ ȟÃÏÓ‌ ȟὰȟὨȟÓÉÎ‌ ȟÃÏÓ‌ ȟὰ ȟ

where: ύί- Wind Speed, ὰ–Turbine type, Ὠ–Distance, ‌–Angle. 

ÅBGNN: - A GNN, where the update functions, ‰ẗȟare MLPs formed by 
stacked DenseFlipoutLayers.

Inputsto the network is a graph tuple, ╖◊ȟ╥ȟ╔ȡ

Å ◊–Global feature shared by the graph:  ◊ ◌▼◄

Å ╥–The node set containing node specific features:  ○░ ■░

Å ╔–The edge set containing edge features: ▄░▒ ▀░▒ȟἻἱἶ♪◄
░▒
ȟἫἷἻ♪◄

░▒

Outputsan updated graph tuple, ╖ ȟͅ╟ȟͅ , where individual turbine 
powerpredictionsare embedded in the updated node features.
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(Wen et al.): Wen, Y., Vicol, P., Ba, J., Tran, D. and Grosse, R., Flipout: Efficient pseudo-independent weight perturbations 
on mini-batches. International Conference on Learning Representations, 2018 (https://arxiv.org/abs/1803.04386). 

What is a Graph? 

What is a GNN?  

Figure 4: Graph Representation.

Figure 5: Graph Block in a GNN.



cStackWGAN-

For any queries:   lars.bentsen@its.uio.no

Conditional Stack Wasserstein Generative Adversarial Network

Figure 6: Proposed cStackWGANmodel.

ÅWGAN –Generator and Discriminator play a minimax two-player game:
ÍÉÎÍÁØὠὋȟὈ ͯ ὈὼȠ— ͯ ὈὋᾀȠ— Ƞ—

ÅEach Generator and Discriminator are represented by GNNs, with MLPs as update functions.

ÅConditioned on the wind speed, turbine type and location of upstream neighbours.
Ą i.e. same inputs as for the BGNN model. 

ÅThe motivation behind a stackedarchitecture is to divide a complex task into multiple simpler tasks, 
each solved by individual Discriminator –Generator pairs.

Stage1: 
Å G1–Predicts mean and standard deviation of entire farm power.

Å D1_mean–Classify mean samples as real or fake.

Å D2_std–Classify standard deviation samples as real or fake.

Stage2: 
Å G2–Predict individual turbine powers, given G1 prediction and condition.

Å D2–Classify individual turbine powers as real or fake.
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Figure 7: MAEs and mean Wasserstein distance against the number of 
closest samples, based on the wind condition, in the test set used to 
estimate the true distributions.

Figure 8: Standard deviation of predicted distributions against MAEs. 

2. A positive correlation between predicted standard deviations and MAEs 
was observed for all models, showing that the models were able to give 
an indication of the associated uncertainties with particular predictions.

3. All models were able to predict the probability distributions for turbine powers 
reasonably well, with the cStackWGANseeming the best at capturing standard 
deviations and generating more complex distributions.

Figure 9: Predicted(red) and true (blue) distributions for turbines 4 and 10 for two
randomlyselectedwind conditions. Histogramswere scaledin (0, 1), while the powers
for the inputsusedto computethe predicteddistributionsis shownby a singleblackbin,
with a maximumof 1.5. Truedistributionswere takenasthe 20 closestneighboursto the
inputs, determinedbasedon the wind condition, while the predictedwere constructed
by sampling1000timesfrom the modelsfor the sameinput condition.

1. Bayesianmodelsperformedthe bestwith regardsto
MAEs, with the BGNNperformingthe best. However,
as more points were used to construct the true
distributions, the cStackWGANperformedthebest.

Results


