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Motivation and Methodology
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AReal datasetsre characterised yncertainty

P 1T the uncertaintiesassociatedvith wind
yve_pro_pose thfee model®r predlctl_ngaower probablllty_ | power prediction
distributions which should be more informative than point estimators.
Inputs to the models are the wind speed, turbine type and location *%L 5% 'l%
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Figure2: lllustration showing a turbineéQ Figure 3AlphaVentus

being downstream of two turbine$and Q
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What is a Graph?

Bayesian Models 7 ©

A Flipout(Wenet al.) was employed f@ayesiaiVariationalnference. '&

A BMLP- A multilayer perceptron formebly stackedenseFlipoutayers.
€35
where: Ui -Wind Speeda— Turbine type Q- Distance, —Angle.
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A BGNN- AGNN where the update functiongo' hare MLPs formed by FEUITE ASCTERIN REFIESEmETon,
stackedDenseFlipouLayers.

Inputsto the network is @raph tuple; (¢ hrhp)d,
A 0 —Global feature shared by the graph: © v,

What is a GNN?

A —The node set containing node specific features: =

Outputsan updated graph tupley h|kh , whereindividual turbine ; /p ..
powerpredictionsare embedded in the updated node features. ]

Figure 5Graph Block in a GNN.
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(Wenet al.): Wen, Y.Vicol P., Ba, J., Tran, D. and Grosse;IiRpgut Efficient pseudendependent weight perturbations
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CStaC kWG A NConditionaI Stack Wasserst&enerative Adversariblletwork

A WGAN- Generator and Discriminator play a minimax-player game:
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A EachGenerator and Discriminatare represented b&NNswith MLPs as updafanctions.
A Conditioned on the wind speed, turbine type and location of upstregighbours.
A i.e. same inputs as for the BGNN model.

A The motivation behind stackedarchitecture is to divide a complex task imualtiple simpler tasks
each solved by individual Discriminat@enerator pairs.

Stagel
A G1-Predicts mean and standard deviation of entire faower. Stage 1 Stage 2
A D1_mean-Classify mean samples as redbée. G(w 21 E) 7| G1 = G([&3],_ ) ——@— G(u,5] [R 1] E) » G2 [~ GLP,)
A D2_std- Classify standard deviation samples as refzlker. —\ X
Stage2 1—¢ I
A G2-Predict individual turbine powers, given G1 predictioncodlition. - > G(u, i, l], E) — — Fak 60w IF 1. E)
S : ———G(u, [, 1], E) — | P1-M€3N [_, peqi
A D2-Classify individual turbine powers as redhke. o L% 2 —[Ha — Fake
— — Real
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1. BayeSIannodelsperformedthe beStWIth regards‘to /v 0.00 0.05 0.10 0.15 0.20 D.Z;IAE 0.00 0.05 0.10 0.15 0.20 0.2;1AE 0.00 0.10 0.20 0.30 MAE
MAEs with the BGtherformingthe best However, Figure 8:Standard deviation of predicted distributions against MAEs.
distributionsthe cStackWGANerformedhe best . was observed for all models, showing that the models were able to give
. an indication of the associated uncertainties with particular predictions.
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Figure 9: Predicted (red) and true (blue) distributions for turbines 4 and 10 for two
Figure 7MAEs and mean Wasserstein distance against the number of/ randomly selectedwind conditions Histogramswere scaledin (0, 1), while the powers
closest samples, based on the wind condition, in the test set used to for the inputs usedto computethe predicteddistributionsis shownby a singleblackbin,
estimate the true distributions. with amaximumof 1.5. Truedistributionswere takenasthe 20 closestneighbourgo the

inputs, determined basedon the wind condition, while the predictedwere constructed
by samplingl000timesfrom the modelsfor the sameinput condition
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